Increasing CO₂ and Ocean Acidification

At 1000 ppm CO₂, pH ~7.7

Feely et al. 2008

pH and Acid-Base Balance

Changes in Inorganic Carbon Distribution

Effects of OA on Calcification

Today [CO₃²⁻]=320 μM

~ 2100 [CO₃²⁻]=140

~2300 [CO₃²⁻]=80

 $[CO_3^{2-}]=20$ Cohen et al. 2009

Favia fragum

C. Vernon

Effects of CO₂ on photosynthesis

Natural Assemblages

Hein and Sand-Jensen 1997

Trichodesmium

Hutchins et al. 2008

Ocean Acidification in Relationship to Southeast Atlantic Fisheries

Patrick Geer, Chief of Marine Fisheries Georgia Department of Natural Resources SOCON August 18, 2015

Fisheries Possibly Impacted by Lower pH

Average Annual Commercial Harvest by State Top 15 Species 2009-2013 (in millions of lb)

Rank	NC	SC	GA	FL - East	Total
1	CRAB, BLUE	CRAB, BLUE	CRAB, BLUE	SHRIMP, WHITE	CRAB, BLUE
	27.066	4.711	3.310	4.303	37.673
2	CROAKER, ATLANTIC	SHRIMP, WHITE	SHRIMP, WHITE	MACKEREL, SPANISH	SHRIMP, WHITE
	4.707	2.156	2.918	2.889	10.930
3	SHRIMP, BROWN	SWORDFISH	SHELLFISH	MACKEREL, KING AND CERO	SWORDFISH
	3.654	0.520	1.486	2.858	2.321
4	SHARK, SPINY DOGFISH	SHRIMP, BROWN	JELLYFISH	CRAB, BLUE	SHRIMP, BROWN
	2.285	0.449	0.949	2.587	5.743
5	FLOUNDER, SUMMER	SHRIMP, MARINE, OTHER	SHRIMP, BROWN	SHRIMP, ROCK	SHRIMP, MARINE, OTHER
	2.131	0.399	0.557	1.495	0.872
6	BLUEFISH	OYSTER, EASTERN	SHRIMP, MARINE, OTHER	MULLET, STRIPED (LIZA)	OYSTER, EASTERN
	1.878	0.343	0.137	1.322	1.108
7	FLOUNDER, SOUTHERN	SNAPPER, VERMILION	FINFISHES, UNC GENERAL	SHRIMP, BROWN	SNAPPER, VERMILION
	1.833	0.317	0.096	1.083	0.924
8	MULLET, STRIPED (LIZA)	SHAD, AMERICAN	CLAM, QUAHOG	SWORDFISH	SHAD, AMERICAN
	1.761	0.280	0.093	1.021	0.528
9	MENHADEN	FINFISHES, UNC GENERAL	CRAB, BLUE, PEELER	CRAB, DEEPSEA GOLDEN	FINFISHES, UNC GENERAL
	1.589	0.175	0.043	0.648	0.375
10	SHRIMP, WHITE	GAG	SHAD, AMERICAN	SHRIMP, PINK	GAG
	1.555	0.146	0.027	0.595	0.463
11	SHARK, SMOOTH DOGFISH	SEA BASS, BLACK	OYSTER, EASTERN	SHRIMP, ROYAL RED	SEA BASS, BLACK
	1.168	0.129	0.022	0.588	0.585
12	MACKEREL, SPANISH	CLAM, NORTHERN QUAHOG	FINFISHES, UNC FOR FOOD	AMBERJACK, GREATER	CLAM, NORTHERN QUAHOG
	0.856	0.126	0.016	0.443	0.126
13	SWORDFISH	SCAMP	CRAB, BLUE, SOFT	TILEFISH, GOLDEN	SCAMP
	0.780	0.114	0.016	0.420	0.188
14	SPOT	LEATHERJACKETS	SNAILS (CONCHS)	LOBSTER, CARIBBEAN SPINY	LEATHERJACKETS
	0.755	0.098	0.016	0.416	0.381
15	OYSTER, EASTERN	DOLPHINFISH	CRAB, FLORIDA STONE CLAWS	KING WHITING	DOLPHINFISH
	0.688	0.093	0.009	0.338	0.623

Harvest by State

Source: NMFS

Research Surveys

Source: GADNR

Penaeid Shrimp

- 1. Spawning offshore (May June).
- 2. Eggs hatch within 24 hrs.
- 3. Naupli develop thru 5 stages 2 days.
- 4. Protozoea develop thru 3 stages over 7 days
- 5. Mysis has 3 stages
- 6. Postlarva (2 stages) rides flood tides up into the creeks.
- 7. Juveniles grow quickly and move into the sounds as they grow.
- 8. Adults migrate offshore to spawn

Total Life Cycle: 6-8 months 30-45 days in ocean

Harvest by State

Source: NMFS

Research Surveys

Source: GADNR

Blue Crab Life Cycle

- Mate upriver MARCH August
- Females migrate down river carrying egg mass – 2 weeks
- Eggs are released in clean, high saline waters in ocean
- Larvae go through two stages and 8 molts and are transported back to the estuary.
- Larvae settle and juveniles migrates into the marshes

Total Life cycle: 1.5-3 years 35-70 days in ocean

Potential Impacts of Ocean Acidification

- Greater with calcifying (CaCO₃) organisms (mollusks, echinoderms, crustacean)
- Marine organisms typically more at risk than estuarine species, slow growing, less mobile species more susceptible
- Early life stages (eggs and larvae) may be at highest risk
- Generalized Impacts of lower pH
 - Calcification
 - Growth
 - Reproduction
 - RECRUITMENT
 - Survivability / Mortality

Specific Impacts on Crustaceans

- Not consistent across the phylum.
- Calcification: Increases
 - lobsters, crabs, and shrimp create thicker shells
 - BUT.... This has a metabolic cost in the long term
 - Reduced condition index less meat, less value to fishery
- Growth: Decreased
 - Longer inter-molt period
 - Smaller growth increment
 - Prolonged period of ecdysis (soft-shelled)
- Reproduction
 - Smaller at maturity less fecund

Specific Impacts on Crustaceans pg2

- Recruitment: Reduced
 - Eggs and larvae development compromised
 - slower growth
- Survivability/Mortality:
 - Smaller size more vulnerable to predators
 - Predators not satiated eat more
- Changes in the plankton community:
 - Food quality and quantity (copepods, amphipods)
 - Timing match/mismatch
 - Predation other zooplankton and high order species

Management Implications of OA for Fisheries, and a question

Identified OA management issues include:

- Shellfish, crustaceans, corals impacts on larval development and shell production
- Fish- Potential secondary impact from reduced food organisms

The question:

Can water quality improvements and seagrass recovery assist in providing 'OA refugia' in estuaries?

Tampa Bay nitrogen load decreased by 50%

Seagrass Recovery Goal Met

SEAGRASS COVERAGE (x 1,000 ACRES)

Data: SWFWMD

Long-term pH measurements indicate increases with seagrass recovery

Tampa Bay OA Monitoring Collaboration

LOCAL: Water quality

Environmental Protection Commission of Hills. County

100 fixed long-term water quality stations (1972-present)

REGIONAL: Seagrass extent

Southwest Florida WMD Aerial surveys every 2 years (1982-present)

STATE: Molluscs, HABs, Fish

Florida Fish and Wildlife Conservation Commission Random sites 1990-present

FEDERAL: Sediment cores

USGS (2002-2005)

Ongoing Research

USGS, FWRI, TBEP examining the role of seagrass beds in elevating pH and carbonate mineral saturation state in Tampa Bay

Ocean Acidification

the Southeastern Bivalve Industry

Defining the bivalve industry in the Southeast U.S.

the number of hatcheries by state South of Virginia

- 1- Louisiana
- 1- Alabama
- 8- Florida
- 1- Georgia
- 1- South Carolina

regional industry in regards to Ocean Acidification?

What do we know?

Have we done any testing?

What is planned?

Acidification?

- It has been a defined problem with hatcheries in other regions
- Economically the bivalve industry in the Southeastern U.S. is worth 100's of millions of dollars.
- Bivalve larvae along with other sensitive invertebrates represent the Canary in the Coal Mine

History of unknown diseases and mortality in bivalves

What are other regions in the world doing?

What should we be doing?

